
Building a Python SEO Dashboard with Google’s API
In this article, we will guide you through the process of building a comprehensive SEO dashboard using Python and Google’s API. This dashboard will provide valuable insights into your website’s performance, allowing you to optimize your content for better search engine rankings.
Prerequisites
Before starting, make sure you have:
- A Google account
- The Google Developers Console set up with the
Custom Search JSON
API enabled - Python 3.x installed on your system
Step 1: Set up a Project and Enable the Custom Search JSON API
- Log in to the Google Developers Console.
- Create a new project or select an existing one.
- Navigate to the
APIs & Services > Library
page. - Search for the
Custom Search JSON API
. - Click on the result and click on the
Enable
button.
Step 2: Create Credentials
- Go to the
APIs & Services > Credentials
page. - Click on the
Create credentials
button. - Select
OAuth client ID
and chooseWeb application
. - Fill in the authorized redirect URI (e.g., http://localhost:8080).
- Click on the
Create
button.
Step 3: Install Required Libraries
Run the following command to install the required libraries:
bash
pip install google-api-python-client pandas matplotlib seaborn requests beautifulsoup4
Step 4: Set up a Python Project and Initialize the Dashboard
- Create a new directory for your project.
- Navigate into the project directory.
- Run
python -m venv env
to create a virtual environment (optional). - Activate the virtual environment by running
. env/bin/activate
. - Install the required libraries using pip.
Step 5: Set up Configuration Files
Create two configuration files:
config.json
: This file will hold your API key and authorized redirect URI.credentials.json
: This file will store the OAuth credentials generated by the Google Developers Console.
“`json
// config.json
{
“api_key”: “YOUR_API_KEY”,
“redirect_uri”: “http://localhost:8080”
}
// credentials.json
{
“client_id”: “YOUR_CLIENT_ID”,
“client_secret”: “YOUR_CLIENT_SECRET”,
“refresh_token”: “YOUR_REFRESH_TOKEN”,
“access_token”: “YOUR_ACCESS_TOKEN”
}
“`
Step 6: Implement the SEO Dashboard
Import Libraries and Load Configuration Files
python
import json
from googleapiclient.discovery import build
import pandas as pd
import matplotlib.pyplot as plt
from bs4 import BeautifulSoup
import requests
Load configuration files:
“`python
with open(‘config.json’) as f:
config = json.load(f)
with open(‘credentials.json’) as f:
credentials = json.load(f)
“`
Implement the Custom Search API
Create a class to handle the custom search API calls:
“`python
class CustomSearchAPI:
def init(self, api_key):
self.service = build(“customsearch”, “v1”, developerKey=api_key)
def get_search_results(self, query):
response = self.service.cse().list(q=query).execute()
return response['items']
“`
Implement the SEO Dashboard Logic
Create a function to fetch search results and calculate SEO metrics:
“`python
def get_seo_metrics():
api = CustomSearchAPI(config[‘api_key’])
search_results = api.get_search_results(‘your_query_here’)
# Calculate SEO metrics (e.g., average position, click-through rate)
seo_metrics = []
for result in search_results:
avg_position = result['position']
ctt = result['title'].count(result['snippet'][0])
seo_metrics.append({'avg_position': avg_position, 'ctt': ctt})
return seo_metrics
“`
Visualize the SEO Metrics
Use libraries like pandas and matplotlib to visualize the SEO metrics:
“`python
def plot_seo_metrics(seo_metrics):
df = pd.DataFrame(seo_metrics)
plt.figure(figsize=(10, 6))
sns.barplot(x='avg_position', y='ctt', data=df)
plt.title('SEO Metrics')
plt.xlabel('Average Position')
plt.ylabel('Click-Through Rate')
plt.show()
“`
Step 7: Run the Script and View the Dashboard
Run the script using Python:
bash
python main.py
This will launch a web-based interface showing the SEO metrics.
Congratulations! You have successfully built a comprehensive SEO dashboard using Python and Google’s API.